Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network
نویسندگان
چکیده
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8 μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
منابع مشابه
The ‘‘RED versus NIR’’ Plane to Retrieve Broken-Cloud Optical Depth from Ground- Based Measurements
A new method for retrieving cloud optical depth from ground-based measurements of zenith radiance in the red (RED) and near-infrared (NIR) spectral regions is introduced. Because zenith radiance does not have a oneto-one relationship with optical depth, it is absolutely impossible to use a monochromatic retrieval. On the other side, algebraic combinations of spectral radiances, such as normaliz...
متن کاملA novel ensemble method for retrieving properties of warm cloud in 3D using groundbased scanning radar and zenith radiances
We present a novel method for retrieving high-resolution, three-dimensional (3-D) nonprecipitating cloud fields in both overcast and broken-cloud situations. The method uses scanning cloud radar and multiwavelength zenith radiances to obtain gridded 3-D liquidwater content (LWC) and effective radius (re) and 2-D column mean droplet number concentration (Nd). By using an adaption of the ensemble...
متن کاملImpact of Aerosol Model Selection on Water-Leaving Radiance Retrievals from Satellite Ocean Color Imagery
We examine the impact of atmospheric correction, specifically aerosol model selection, on retrieval of bio-optical properties from satellite ocean color imagery. Uncertainties in retrievals of bio-optical properties (such as chlorophyll, absorption, and backscattering coefficients) from satellite ocean color imagery are related to a variety of factors, including errors associated with sensor ca...
متن کاملJoint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitatio...
متن کاملFirst Surface-based Estimation of the Aerosol Indirect Effect over a Site in Southeastern China
The deployment of the U.S. Atmospheric Radiation Measurement mobile facility in Shouxian from May to December 2008 amassed the most comprehensive set of measurements of atmospheric, surface, aerosol, and cloud variables in China. This deployment provided a unique opportunity to investigate the aerosol–cloud interactions, which are most challenging and, to date, have not been examined to any gre...
متن کامل